
SANJEEV SHARMA
sanjivksharma@yahoo.com

Informatics Practices(New)

CLASS XII Code No. 065 -2019-20

Unit 1: Data Handling (DH-2)

Numeric Python or Numpy

Before using Numeric Python let us quickly revise the List Data

structure:

A list can hold any type and can hold different types of elements

at the same time. We can also change, add and remove elements

from the List.

But one operation that is sometime important for us is not possible

in with the List. That operation is to perform calculation on all the

elements of the List at once. We have to perform elements by

element operation on the List, which is a slow process.

Let's take two List of marks and find the sum of elements of two

Lists

First_List = [20,25,30,40]

Second_List = [25,15,35,30]

Third_List= First_List + Second_List

print(Third_List)

Output :

[25, 15, 35, 30, 20, 25, 30, 40]

The above operation will combine these two Lists and make a new

List. Instead of adding each element of first list with each element

of second list this operation will simply combine both list.

Let’s take one more example and try to use multiplication operator

with two Lists:

Values1 = [20,25,30,40]

Values2 = [25,15,35,30]

print(Values1 * Values2)

The above operation will produce an error

TypeError: can't multiply sequence by non-int of type 'list'

We can solve this by going through each list element one after the

other, and finding the multiplication/sum of each element of both

Lists separately, but this is terribly inefficient and tiresome for

large Lists.

Numpy Array :

More elegant solution of the above problem is to use NumPy, or

Numeric Python. It's a Python package that, among others,

provides an alternative to the regular python List: the Numpy

array. The Numpy array is pretty similar to a regular Python List,

but has one additional feature:

We can perform calculations over entire arrays at once. It's really

easy, and fast as well.

To actually use Numpy array in our Python script, we have to

import the numpy package like this.

import numpy as np

Example 1:

Python script with the use of numpy package

import numpy as np # Import Numeric Python Library

Creation of Two List

Values1 = [20,25,30,40]

Values2 = [25,15,35,30]

print("\n First we make Two new Numpy Arrays with above Two

Lists")

Values3=np.array(Values1)

Values4=np.array(Values2)

print("\n Use of multiplication operator with Numpy Arrays")

print(Values3 * Values4)

print("\n The above operation will multiply each element of First

Array with each element of the Second Array")

Output :

First we make Two new Numpy Arrays with above Two Lists

 Use of multiplication operator with Arrays
[500 375 1050 1200]

 The above operation will multiply each element of First Array wit
h each element of the Second Array

The calculation is performed element-wise. The first element of

array one is multiplied with the first element of second array and

so on.

If our list has different types of elements in it for example:

Values1 = [1 , "String Value", True]

Element 1 is an Integer

Element 2 is a String

Element 3 is a Boolean

And if we create a numpy array with the above list

My_array=np.array(Values1)

The My_array will have all three elements of String Type, this

means that If our List contains elements with different datatypes

the numpy array will convert the datatype of all elements into

String.

Example :

Python script with the use of different elements in the List

import numpy as np

Creation of List with three different elements:

#1. integer 2. String 3. Boolean

Values1 = [1, "String Value", True]

print("Original List")

print(Values1)

print("\n Use of numpy array\n")

Values3=np.array(Values1)

print("Above statement will create an numpy array with string data

type of all elements ")

print(Values3)

Output:

Original List

[1, 'String Value', True]

Use of numpy array

Above statement will create an numpy array with string data type

of all elements

['1' 'String Value' 'True']

The resulting Numpy array will contain a single type, String in this

case. Numpy array is simply a new kind of Python type, like the

float, string and List types. We can work with Numpy arrays pretty

much the same as we can with regular Python Lists.

When we want to get elements from our array, we can use square

brackets. Suppose we want to get the second element from the

Value1 array we can write the statement like this:

Element = Value1[1] # Index starts at 0

2D Numpy Arrays :

A 2D arrays is a collection of Rows and Columns. Let’s create a 2D

array using numpy :

TwoD_array = np.array([[10 , 20 , 30] , [40 , 50 ,60]])

If we print this array using the statement

print(TwoD_array)

The output will be

[[10 20 30]

 [40 50 60]]

We can access each element of the 2D array using square brackets

and index of the elements.

print(TwoD_array[0]) # This will print the First row

print(TwoD_array[0][0]) # This will print the First element of First

row

print(TwoD_array[1]) # This will print the Second row

print(TwoD_array[1][2]) # This will print the Third element of

Second row

Subsetting:

print(TwoD_array[1,1:3) #This will print the Second and Third

element of Second row

 print(TwoD_array[:,0:2)(# This will print the First and Second

element of all rows

print(TwoD_array[1,:) #This will print the Second row

Example 1:

2D Array

import numpy as np

Creation of 2D Array

TwoD_array = np.array([[10 , 20 , 30] , [40 , 50 ,60]]) # use of

nested lists

print("\nOriginal 2D Array")

print(TwoD_array)

print("\nPrinting the Size of the Array using shape attribute\n")

print(TwoD_array.shape) # use of shape attribute to find the

number of roww and columns in each row

print("\nAccessing Individual elements from the 2D Array\n")

This will print the First row

print("\nThis will print the First row",TwoD_array[0])

This will print the First element of First row

print("\nThis will print the First element of First

row",TwoD_array[0][0])

This will print the Second row

print("\nThis will print the Second row",TwoD_array[1])

This will print the Third element of Second row

Output:

Original 2D Array

[[10 20 30]

 [40 50 60]]

Printing the Size of the Array using shape attribute

(2, 3)

Accessing Individual elements from the 2D Array

This will print the First row [10 20 30]

This will print the First element of First row 10

This will print the Second row [40 50 60]

This will print the Third element of Second row 60

This will also print the Third element of Second row 60

Example 2:

2D Array and Subsetting

import numpy as np

Creation of 2D Array

TwoD_array = np.array([[10 , 20 , 30] , [40 , 50 ,60]]) # use of

nested lists

print("\nOriginal 2D Array")

print(TwoD_array)

print("\nUse of Subsetting to access elements\n")

This will print the Second and Third element of Second row

print("\nThis will print the Second and Third element of Second

row",TwoD_array[1,1:3])

 # This will print the First and Second element of all rows

print("\nThis will print the First and Second element of all

rows",TwoD_array[:,0:2])

This will print the Second row

print("\nThis will print the Second row",TwoD_array[1,:])

Output:

Original 2D Array

[[10 20 30]

 [40 50 60]]

Use of Subsetting to access elements

This will print the Second and Third element of Second row [50 60]

This will print the First and Second element of all rows [[10 20]

 [40 50]]

This will print the Second row [40 50 60]

Slicing:

Slicing a 2D array means to extract elements from a previously

created 2D array by specifying start, stop and step values.

The basic slice syntax is i:j:k where i is the starting index, j is the

stopping index, and k is the step.

Negative i and j are interpreted as n + i and n + j where n is the

number of elements. Negative k makes stepping go towards smaller

indices.

Assume n is the number of elements being sliced. Then, if i is not

given it defaults to 0 for k > 0 and n - 1 for k < 0. If j is not given it

defaults to n for k > 0 and -n-1 for k < 0 . If k is not given it defaults

to 1.

Note that :: is the same as : and means select all elements.

Example :

2D Array and Slicing

import numpy as np

Creation of 2D Array

Myarray = np.array([10 , 20 , 30, 40 , 50 ,60])

print("\nOriginal 1D Array")

print(Myarray)

print("\nUse of Slicing - START - STOP - STEP \n")

print("\nIn this example we are writing i, j , k in place of START ,

STOP , STEP ")

print("\nPrinting starts from Second to Fourth element using Step

value 1")

print(Myarray[1:4:1])

print("\n If i is not given it defaults to 0 for k > 0 and n - 1 for k <

0")

print(Myarray[:4:1])

print("\nIf j is not given it defaults to n-1")

print(Myarray[0::1])

print("\nIf i,j,k are not given it defaults to all elements")

print(Myarray[:])

print("\nWe can aslo use :: column to print all elements")

print(Myarray[::]) # We can aslo use :: column to print all elements

print("\nNegative i and j are interpreted as n + i and n + j where n

is the number of elements")

print(Myarray[-4:-1:1])

print("\nNegative k makes stepping go towards smaller indices.")

print(Myarray[4:1:-1])

Output:

Original 1D Array

[10 20 30 40 50 60]

Use of Slicing - START - STOP - STEP

In this example we are writing i, j , k in place of START , STOP ,

STEP

Printing starts from Second to Fourth element using Step value 1

[20 30 40]

 If i is not given it defaults to 0 for k > 0 and n - 1 for k < 0

[10 20 30 40]

If j is not given it defaults to n-1

[10 20 30 40 50 60]

If i,j,k are not given it defaults to all elements

[10 20 30 40 50 60]

We can aslo use :: column to print all elements

[10 20 30 40 50 60]

Negative i and j are interpreted as n + i and n + j where n is the

number of elements

[30 40 50]

Negative k makes stepping go towards smaller indices.

[50 40 30]

Subsets:

Subset means to create a new numpy array or subset from the

existing numpy array.

Use of slicing to create new Subset of Array

import numpy as np

Creation of 2D Array

Myarray1D = np.array([10 , 20 , 30, 40 , 50 ,60])

Myarray2D = np.array([[10 , 20 , 30], [40 , 50 ,60]])

print("\nOriginal 1D Array")

print(Myarray1D)

print("\nOriginal 2D Array")

print(Myarray2D)

print("\n Subset of Myarray1D from Second to Fourth Element ")

subset=Myarray[1:4]

print(subset)

print("\n Subset of Myarray2D from Second row First Elements to

Second Element ")

subset=Myarray2D[1,0:2]

print(subset)

Output:

Original 1D Array

[10 20 30 40 50 60]

Original 2D Array

[[10 20 30]

 [40 50 60]]

Use of slicing to create new Array

Subset of Myarray1D from Second to Fourth Element

[20 30 40]

Subset of Myarray2D from Second row First Elements to Second

Element

[[40 50]]

Arithmetic operations on 2D arrays :

Some basic Arithmetic operations such as + ,- ,/ ,* ,% ,** etc.

Arithmetic operations on 2D array

import numpy as np

Creation of 2D Array

TwoD_array = np.array([[10 , 20 , 30] , [40 , 50 ,60]]) # use of

nested lists

TwoD_arraySecond = np.array([[2 , 4 , 6] , [8 , 10 ,12]]) # use of

nested lists

print("\nOriginal 2D Array")

print(TwoD_array)

print("\nUse of Adition Operator +")

print(TwoD_array +2)

print("\nUse of Substraction Operator -")

print(TwoD_array - 2)

print("\nUse of Multiplication Operator -")

print(TwoD_array * 2)

print("\nUse of Division Operator /")

print(TwoD_array / 2)

print("\nUse of Division Operator /")

print(TwoD_array % 2)

print("\nUse of Exponential Operator **")

print(TwoD_array ** 2)

print("\nUse of Addition Operator + to add Two 2D arrays")

print(TwoD_array + TwoD_arraySecond)

Output:

Original 2D Array

[[10 20 30]

 [40 50 60]]

Use of Adition Operator +

[[12 22 32]

 [42 52 62]]

Use of Substraction Operator -

[[8 18 28]

 [38 48 58]]

Use of Multiplication Operator -

[[20 40 60]

 [80 100 120]]

Use of Division Operator /

[[5. 10. 15.]

 [20. 25. 30.]]

Use of Division Operator /

[[0 0 0]

 [0 0 0]]

Use of Exponential Operator **

[[100 400 900]

 [1600 2500 3600]]

Use of Addition Operator + to add Two 2D arrays

[[12 24 36]

 [48 60 72]]

Covariance, Correlation and Linear Regression:

Covariance:

Covariance is a measure of relationship between 2 variables. It

measures the degree of change in the variables, i.e. when one

variable changes, will there be the same/a similar change in the

other variable. This measure is scale dependent because it is not

standardized. We can easily find the Covariance by using inbuilt

functions cov().

Example:

#Python program to calculate Covariance

import pandas as pd

data = pd.DataFrame({

'name':['Naresh','Mohit','Rajesh','TC Soni'],

 'experience':[1,2,3,4],

'salary':[25000,35000,30000,20000],

'join_year' :[2007,2008,2007,2008]

})

print("Data for the Covariance is \n")

print(data)

print("\n Covariance of above Data \n")

print(data.cov()) # cov() function is used to find the Covariance

Output:

Data for the Covariance is

 name experience salary join_year

0 Naresh 1 25000 2007

1 Mohit 2 35000 2008

2 Rajesh 3 30000 2007

3 TC Soni 4 20000 2008

 Covariance of above Data

 experience salary join_year

experience 1.666667 -3.333333e+03 0.333333

salary -3333.333333 4.166667e+07 0.000000

join_year 0.333333 0.000000e+00 0.333333

Correlation:

Correlation is a measure of relationship between variables that is

measured on a -1 to 1 scale. The closer the correlation value is to

-1 or 1 the stronger the relationship, the closer to 0, the weaker

the relationship. It measures how change in one variable is

associated with change in another variable. We can easily find the

Correlation by using inbuilt functions corr().

Example:

#Python program to calculate Correlation

import pandas as pd

data = pd.DataFrame({

'name':['Naresh','Mohit','Rajesh','Amit'],

 'experience':[1,2,3,4],

'salary':[25000,35000,30000,20000],

'join_year' :[2007,2008,2010,2008]

})

print("Data for the Correlation is \n")

print(data)

print("\n Correlation of above data \n")

cor() function is used to find the Correlation

print(data.corr(method='pearson'))

method parameter is optional default is pearson

Output:

Data for the Correlation is

 name experience salary join_year

0 Naresh 1 25000 2007

1 Mohit 2 35000 2008

2 Rajesh 3 30000 2010

3 Amit 4 20000 2008

 Correlation of above data

 experience salary join_year

experience 1.000000 -0.400000 0.512989

salary -0.400000 1.000000 0.307794

join_year 0.512989 0.307794 1.000000

Linear Regression:

The objective of a linear regression model is to find a relationship

between one or more features (independent variables) and a

continuous target variable (dependent variable)

Where can Linear Regression be used?

It is a very powerful technique and can be used to understand the

factors that influence profitability. It can be used to forecast sales

in the coming months by analyzing the sales data for previous

months.

Example:

A Python program demonstrating Linear Regression

import pandas as pd

Use of matplotlib to Draw Diagram

import matplotlib.pyplot as plt

House_Loan = {'Year':

[2018,2018,2018,2018,2017,2017,2017,2017],

 'Month': [12,11,10,9,8,12,11,9],

 'Interest_Rate': [2.75,2.5,2.5,2.25,1.75,1.75,1.75,1.75],

 'Defaulter_Rate': [5.3,5.3,5.4,5.6,6.2,6.1,5.9,6.2],

 'Bank_Index_Price':

[1464,1394,1357,1293,965,943,958,971]

 }

df =pd. DataFrame(House_Loan,columns= ['Year','Month',

'Interest_Rate', 'Defaulter_Rate', 'Bank_Index_Price'])

plt.scatter(df['Interest_Rate'], df['Bank_Index_Price'], color='red')

plt.title('Bank Index Price Vs Interest Rate', fontsize=14)

plt.xlabel('Interest Rate', fontsize=14)

plt.ylabel('Bank Index Price', fontsize=14)

plt.grid(True)

plt.show()

plt.scatter(df['Defaulter_Rate'],df['Bank_Index_Price'],

color='green')

plt.title('Bank Index Price Vs Defaulter Rate', fontsize=14)

plt.xlabel('Defaulter Rate', fontsize=14)

plt.ylabel('Bank Index Price', fontsize=14)

plt.grid(True)

plt.show()

Output:

